نتایج نقطه ثابت مشترک وتقریب برای نگاشتهای ناجابجایی روی فضای محدب موضعی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم پایه
- author رقیه ظهوری
- adviser محمد موسایی اسماعیل فیضی
- Number of pages: First 15 pages
- publication year 1391
abstract
هدف از این پایان نامه تعمیم نتیجه مشهور جانک به فضای محدب موضعی و اثبات قضایای نقطه ثابت مشترک برای نگاشتهای (t,i)-نامبسوط زیرسازگار در فضای محدب موضعی است. این قضایا را برای بدست آوردن نتایج وجود نقطه ثابت مشترک برای مجموعه بهترین تقریب نیز بکار خواهیم برد. همچنین نتایج نقطه ثابت مشترک و تقریب برای کلاس جدیدی از زوج عملگر باناخ اثبات خواهد شد.
similar resources
نتایج نقطه ثابت مشترک برای نگاشتهای سه تایی در فضای متریک تعمیم یافته
با توجه به اصل انقباض باناخ نقطه ثابت مشترک را برای نگاشتهای سه تایی در فضای متریک کامل تعمیم یافته بدست می اوریم.
قضایای نقطه ثابت برای نگاشتهای مرکز دار
در این مقاله به اثبات قضایای نقطه ثابت برای دسته جدیدی از نگاشتهای غیر خطی موسوم به نگاشتهای مرکزدار پرداخته ایم.
15 صفحه اولخواص نقطه ثابت نگاشتهای غیر انبساطی در فضای تابعی مدولار
هدف این پایان نامه، بحث در باره وجود نقطه ثابت، برای نگاشتهای غیرانبساطی نقطه ای مجانبی تعریف شده روی بعضی زیرمجموعه فضاهای تابعی مدولار است. کرک و خیو درباره وجود نقاط ثابت نگاشتهای غیر انبساطی نقطه ای ای مجانبی در فضاهای باناخ مطالعه کردند. در این پایان نامه، در مورد این نوع نگاشتها در فضاهای تابعی مدولار، تحقیق شده است.
قضایای نقطه ثابت نگاشتهای غیرخطی در فضای هیلبرت
در این پایان نامه نگاشت های ناگسترشی مجانبی؛ t_j و شبه ناگسترشی k - اکیدا را معرفی می کنیم و ثابت می کنیم اگر c یک زیرمجموعه ناتهی ? محدب و بسته ار فضای هیلبرت h باشد؛ آنگاه نگاشت ناگسترشی مجانبی (t_j)مجانبی t: c--c؛ دارای یک نقطه تابث است اگر و تنها اگر به ازای x متعلق به x کراندار باشد و در آخر همگرایی ضعیف و قوی نگاشت های شبه ناگسترشی k - اکید را مورد بحث قرار می دهیم. سپس با استفاده از مفهو...
قضیه های نقطه ثابت وقضیه های ارگودیک روی نگاشتهای غیر خطی در فضای هیلبرت
در این پایان نامه به بررسی قضیه های نقطه ثابت در فضاهای متریک کامل می پردازیم. رده هایی از نگاشتهای غیرخطی را در نظر می گیریم که شامل رده نگاشت های غیر انبساطی مستحکم می باشند که مسئله تعادل را در فضای هیلبرت نتیجه می دهند. در بررسی قضایای نقطه ثابت روی نگاشت های غیر خطی ازقضایای نگاشت های غیر انبساطی، نگاشت های غیر توسیعی، نگاشت های هیبریدی،و قضایای نیم بسته در فضای هیلبرت استفاده می شود. بعلا...
بررسی شروط ناجابجایی توابع در قضایای نقطه ثابت روی فضای متریک و کاربردهای آن
هدف در این طرح پایان نامه بررسی و ارائه تاریخچه مختصری از پیدایش و توسعه گونه های ضعیف تر مجموعه نگاشت های جابجایی با استفاده از تعاریف و مقایسه آنها است تا بتوان نگاشتهای فوق را از جهت نقطه نظرات کاربردی کنار هم آورد.
My Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم پایه
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023